INTRODUCTION

Inflammation is the complex response of the immune system to infection and injury that leads to removal of ending factors and restoration of tissue structure and physiological function (Ricciotti E, FitzGerald, 2011). The symptoms of inflammation are characterized by pain, heat, redness, swelling and loss of function. It can be classified into two major types either acute or chronic, based on the duration of the inflammatory reaction. Tough initiated as a protective phenomenon, loss of regulation of this complex process can lead to the development of various inflammatory disorders.

Herbs and herbal extracts have been used to treat various ailments since ages. Their derivatives have attracted tremendous attention therapeutically and are promising as remedies to treat diseases of diversified origin. Herbs especially have fallen into limelight, anticipating their replacement with sophisticated
drugs. More than 50% of modern drugs existing in clinical use today are derived from plants. Metal nanoparticles have proved to be of significance due to their lesser volume to surface area ratio along with their catalytic, optical, electrical and magnetic characteristics (Nelson et al., 2010), that are extensively used owing to their antimicrobial properties. Silver nanoparticles contribute even more agents. Moreover, they are highly conductive, chemically stable and highly economical (Niraimathiet al., 2014). The plant extract was used for the preparation of silver nanoparticles owing to its least toxicity and lesser need for elaborate purification as compared to the chemical methods. The present work essentially deals with increasing therapeutic efficacy of the selected drug in its nanoparticle form. In the present study to synthesis of silver nanoparticles using the aqueous leaf extract of Azimatetracantha and evaluate the anti-inflammatory activity.

MATERIALS AND METHODS

Preparation of leaf extract

The dried leaves were pulverized well with mortar and pestle to make a powder. Twenty grams of powder sample was mixed into 100 ml of deionized water and the mixture was boiled for 10 min. After cooling the leaf extract was filtered with Whatman No. 1 filter paper. The filtrate was stored at 4°C for further use.

Synthesis of Ag nanoparticles using leaf extracts

For the Ag nanoparticles synthesis, 5 ml of Azimatetracantha leaf extract was added to 45 ml of 1 mM aqueous AgNO₃ solution in a 250 ml Erlenmeyer flask. The flask was then incubated in the dark at 5hrs (to minimize the photo activation of silver nitrate), at room temperature. A control setup was also maintained without leaf extract. The Ag nanoparticle solution thus obtained was purified by repeated centrifugation at 10,000 rpm for 15 min followed by re-dispersion of the pellet in de-ionized water. Then the Ag nanoparticles were freeze dried using SEM analysis (Arunachalam et al., 2012).

IN VITRO ANTI-INFLAMMATORY ACTIVITY

In vitro anti-inflammatory activity was carried out by the method of Sangita Chandra et al. (2012). In vitro anti-inflammatory activity was carried out by the method of Sangita Chandra et al. (2012).

RESULTS AND DISCUSSION:

There are certain problems in using animals in experimental pharmacological research, such as ethical issues and the lack of rationale for their use when other suitable methods are available or could be investigated. Hence, in the present study the protein denaturation bioassay was selected for in vitro assessment of anti-inflammatory property of Azimatetracantha leaf extract and AgNPs. Denaturation of tissue proteins is one of the well-documented causes of inflammatory and arthritic diseases. Production of auto antigens in certain arthritic diseases may be due to denaturation of proteins (Egg albumin and Bovine serum albumin) in vivo (Opie, 1962; Umapathy et al., 2010). Agents that can prevent protein denaturation therefore, would be worthwhile for anti-inflammatory drug development.

The use of nano-herbal-technology to synthesize compounds with improved anti-inflammatory properties is an area of current research by many scientists. In our study, we report the non-toxic, practical and environmentally benevolent approach for the synthesis of silver nanoparticles using the aqueous leaf extract of Azimatetracantha with potent anti-inflammatory activity. The synthesized and characterization of AgNPs from Azimatetracantha leaf extract showed the particle size between 10-80nm as well the cubic structure of the nanoparticles reported in our earlier report (Manimegalai and Velavan, 2015).

The increments in absorbances of test samples with respect to control indicated stabilization of protein i.e. inhibition of heat-induced protein denaturation by Azimatetracantha leaf extract, AgNPs and reference drug diclofenac sodium. The present findings exhibited a concentration dependent inhibition of protein denaturation by the Azimatetracantha leaf extract and AgNPs. The lowest activity of Azimatetracantha leaf extract, AgNPs and diclofenac sodium were 10.32%, 14.56% and 21.03% in the concentration of 100µg/ml respectively while the highest activity of Azimatetracantha leaf extract, AgNPs and diclofenac sodium were 68.67%, 82.64% and 89.65% in the concentration of 500µg/ml respectively. The greatest effect of AgNPs (500 µg/ml) was found to be near to standard diclofenac sodium. The half inhibition concentration (IC₅₀) of Azimatetracantha leaf extract, AgNPsand diclofenac sodium were 359.22, 287.42µg/ml and 237.14µg/ml respectively. From the present study it can be concluded that AgNPsshowed marked in vitro anti-inflammatory effect against the denaturation of protein (Table 1 and Figure 1). Our result agrees with the earlier report (Aparna Mani et al., 2015; Giridharanet al., 2014).

RESULTS AND DISCUSSION:

There are certain problems in using animals in experimental pharmacological research, such as ethical issues and the lack of rationale for their use when other suitable methods are available or could be investigated. Hence, in the present study the protein denaturation bioassay was selected for in vitro assessment of anti-inflammatory property of Azimatetracantha leaf extract and AgNPs. Denaturation of tissue proteins is one of the well-documented causes of inflammatory and arthritic diseases. Production of auto antigens in certain arthritic diseases may be due to denaturation of proteins (Egg albumin and Bovine serum albumin) in vivo (Opie, 1962; Umapathy et al., 2010). Agents that can prevent protein denaturation therefore, would be worthwhile for anti-inflammatory drug development.

The use of nano-herbal-technology to synthesize compounds with improved anti-inflammatory properties is an area of current research by many scientists. In our study, we report the non-toxic, practical and environmentally benevolent approach for the synthesis of silver nanoparticles using the aqueous leaf extract of Azimatetracantha with potent anti-inflammatory activity. The synthesized and characterization of AgNPs from Azimatetracantha leaf extract showed the particle size between 10-80nm as well the cubic structure of the nanoparticles reported in our earlier report (Manimegalai and Velavan, 2015).

The increments in absorbances of test samples with respect to control indicated stabilization of protein i.e. inhibition of heat-induced protein denaturation by Azimatetracantha leaf extract, AgNPs and reference drug diclofenac sodium. The present findings exhibited a concentration dependent inhibition of protein denaturation by the Azimatetracantha leaf extract and AgNPs. The lowest activity of Azimatetracantha leaf extract, AgNPs and diclofenac sodium were 10.32%, 14.56% and 21.03% in the concentration of 100µg/ml respectively while the highest activity of Azimatetracantha leaf extract, AgNPs and diclofenac sodium were 68.67%, 82.64% and 89.65% in the concentration of 500µg/ml respectively. The greatest effect of AgNPs (500 µg/ml) was found to be near to standard diclofenac sodium. The half inhibition concentration (IC₅₀) of Azimatetracantha leaf extract, AgNPsand diclofenac sodium were 359.22, 287.42µg/ml and 237.14µg/ml respectively. From the present study it can be concluded that AgNPsshowed marked in vitro anti-inflammatory effect against the denaturation of protein (Table 1 and Figure 1). Our result agrees with the earlier report (Aparna Mani et al., 2015; Giridharanet al., 2014)

RESULTS AND DISCUSSION:

There are certain problems in using animals in experimental pharmacological research, such as ethical issues and the lack of rationale for their use when other suitable methods are available or could be investigated. Hence, in the present study the protein denaturation bioassay was selected for in vitro assessment of anti-inflammatory property of Azimatetracantha leaf extract and AgNPs. Denaturation of tissue proteins is one of the well-documented causes of inflammatory and arthritic diseases. Production of auto antigens in certain arthritic diseases may be due to denaturation of proteins (Egg albumin and Bovine serum albumin) in vivo (Opie, 1962; Umapathy et al., 2010). Agents that can prevent protein denaturation therefore, would be worthwhile for anti-inflammatory drug development.

The use of nano-herbal-technology to synthesize compounds with improved anti-inflammatory properties is an area of current research by many scientists. In our study, we report the non-toxic, practical and environmentally benevolent approach for the synthesis of silver nanoparticles using the aqueous leaf extract of Azimatetracantha with potent anti-inflammatory activity. The synthesized and characterization of AgNPs from Azimatetracantha leaf extract showed the particle size between 10-80nm as well the cubic structure of the nanoparticles reported in our earlier report (Manimegalai and Velavan, 2015).

The increments in absorbances of test samples with respect to control indicated stabilization of protein i.e. inhibition of heat-induced protein denaturation by Azimatetracantha leaf extract, AgNPs and reference drug diclofenac sodium. The present findings exhibited a concentration dependent inhibition of protein denaturation by the Azimatetracantha leaf extract and AgNPs. The lowest activity of Azimatetracantha leaf extract, AgNPs and diclofenac sodium were 10.32%, 14.56% and 21.03% in the concentration of 100µg/ml respectively while the highest activity of Azimatetracantha leaf extract, AgNPs and diclofenac sodium were 68.67%, 82.64% and 89.65% in the concentration of 500µg/ml respectively. The greatest effect of AgNPs (500 µg/ml) was found to be near to standard diclofenac sodium. The half inhibition concentration (IC₅₀) of Azimatetracantha leaf extract, AgNPsand diclofenac sodium were 359.22, 287.42µg/ml and 237.14µg/ml respectively. From the present study it can be concluded that AgNPsshowed marked in vitro anti-inflammatory effect against the denaturation of protein (Table 1 and Figure 1). Our result agrees with the earlier report (Aparna Mani et al., 2015; Giridharanet al., 2014).
Table 1: Effect of *Azimatetracantha*, AgNPs and Diclofenac sodium on protein denaturation (Fresh egg albumin)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Concentrations</th>
<th>% of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Azimatetracantha</td>
</tr>
<tr>
<td>Group I</td>
<td>100µg/ml</td>
<td>10.32±0.72</td>
</tr>
<tr>
<td>Group II</td>
<td>200µg/ml</td>
<td>35.74±2.50</td>
</tr>
<tr>
<td>Group III</td>
<td>300µg/ml</td>
<td>42.36±2.96</td>
</tr>
<tr>
<td>Group IV</td>
<td>400µg/ml</td>
<td>52.84±3.69</td>
</tr>
<tr>
<td>Group V</td>
<td>500µg/ml</td>
<td>68.97±4.82</td>
</tr>
</tbody>
</table>

IC₅₀ (µg/ml) 359.22 287.42 237.14

Values are expressed as Mean ± SD for triplicates.

Figure 1: Effect of *Azimatetracantha*, AgNPs and Diclofenac sodium on protein denaturation (Fresh egg albumin)

The present findings exhibited a concentration dependent inhibition of protein (Bovine serum albumin) denaturation by the *Azimatetracantha* leaf extract and AgNPs. The lowest activity of *Azimatetracantha* leaf extract, AgNPs and Diclofenac sodium were 20.56%, 25.36% and 23.75% in the concentration of 100µg/ml respectively while the highest activity of *Azimatetracantha* leaf extract, AgNPs and Diclofenac sodium were 71.85%, 86.24% and 91.52% in the concentration of 500µg/ml respectively. The half inhibition concentration (IC₅₀) of *Azimatetracantha* leaf extract, AgNPs and ascorbic acid were 281.75, 131.89µg/ml¹ and 154.91µg/ml¹ respectively. The greatest effect of AgNPs (500 µg/ml) was found to be near to standard diclofenac sodium. From the present study it can be concluded that AgNPs showed marked *in vitro* anti-inflammatory effect against the denaturation of protein (Table 2 and Figure 2). Our result agrees with the earlier report (Aparna Mani et al., 2015; Giridharan et al., 2014)

Table 2: Effect of *Azimatetracantha*, AgNPs and Diclofenac sodium on protein denaturation (Bovine serum albumin)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Concentrations</th>
<th>% of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Azimatetracantha</td>
</tr>
<tr>
<td>Group I</td>
<td>100µg/ml</td>
<td>20.56±1.43</td>
</tr>
<tr>
<td>Group II</td>
<td>200µg/ml</td>
<td>43.65±3.05</td>
</tr>
<tr>
<td>Group III</td>
<td>300µg/ml</td>
<td>50.25±3.51</td>
</tr>
<tr>
<td>Group IV</td>
<td>400µg/ml</td>
<td>61.74±4.32</td>
</tr>
<tr>
<td>Group V</td>
<td>500µg/ml</td>
<td>71.85±5.02</td>
</tr>
</tbody>
</table>

IC₅₀ (µg/ml) 281.75 131.89 154.91

Values are expressed as Mean ± SD for triplicates.
CONCLUSION

The synthesised silver nanoparticles are capped by the phytochemicals of Azimatractacantha leaf extract especially flavonoids and show significant anti-inflammatory effects. In conclusion combining the benefits of phytomedicine with nanomedicine can result in the formation of more efficient silver nanoparticles. This finding suggests that the synthesis of AgNPs using Azimatractacantha leaf extract could be a good source for developing green nano-medicine for the management of inflammation.

REFERENCES


